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Abstract
Di�erence-in-di�erences (DID) is commonly used for causal inference in time-series cross-sectional data.
It requires the assumption that the average outcomes of treated and control units would have followed
parallel paths in the absence of treatment. In this paper, we propose a method that not only relaxes
this o�en-violated assumption, but also unifies the synthetic control method (Abadie, Diamond, and
Hainmueller 2010) with linear fixed e�ects models under a simple framework, of which DID is a special case.
It imputes counterfactuals for each treated unit using control group information based on a linear interactive
fixed e�ects model that incorporates unit-specific intercepts interacted with time-varying coe�icients. This
method has several advantages. First, it allows the treatment to be correlated with unobserved unit and
time heterogeneities under reasonable modeling assumptions. Second, it generalizes the synthetic control
method to the case of multiple treated units and variable treatment periods, and improves e�iciency and
interpretability. Third, with a built-in cross-validation procedure, it avoids specification searches and thus is
easy to implement. An empirical example of Election Day Registration and voter turnout in the United States
is provided.

1 Introduction
Di�erence-in-di�erences (DID) is one of the most commonly used empirical designs in today’s
social sciences. The identifying assumptions for DID include the “parallel trends” assumption,
which states that in the absence of the treatment the average outcomes of treated and control
units would have followed parallel paths. This assumption is not directly testable, but researchers
have more confidence in its validity when they find that the average outcomes of the treated
and control units follow parallel paths in pretreatment periods. In many cases, however, parallel
pretreatment trends are not supported by data, a clear sign that the “parallel trends” assumption
is likely to fail in the posttreatment period as well. This paper attempts to deal with this problem
systematically. It proposes a method that estimates the average treatment e�ect on the treated
using time-series cross-sectional (TSCS) data when the “parallel trends” assumption is not likely
to hold.
The presence of unobserved time-varying confounders causes the failure of this assumption.

There are broadly two approaches in the literature to deal with this problem. The first one is
to condition on pretreatment observables using matching methods, which may help balance
the influence of potential time-varying confounders between treatment and control groups. For
example, Abadie (2005) proposes matching before DID estimations. Although this method is easy

Author’s note: The author is indebted toMatt Blackwell, Devin Caughey, Justin Grimmer, Jens Hainmueller, DannyHidalgo,
Simon Jackman, Jonathan Katz, Luke Keele, Eric Min, Molly Roberts, Jim Snyder, Brandon Stewart, Teppei Yamamoto,
as well as seminar participants at the 2015 MPSA Annual Meeting and 2015 APSA Annual Meeting for helpful comments
and suggestions. The author thanks the editor, Mike Alvarez, and two anonymous reviewers for their extremely helpful
suggestions. He also thanks Jushan Bai for generously sharing the Matlab codes used in Bai (2009) and Melanie Springer
for kindly providing the state-level voter turnout data (1920–2000). The source code and data used in the paper can be
downloaded from the Political Analysis Dataverse at dx.doi.org/10.7910/DVN/8AKACJ (Xu 2016) as well as the author’s
website.
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to implement, it does not guarantee parallel pretreatment trends. The synthetic control method
proposed by Abadie, Diamond, and Hainmueller (2010, 2015) goes one step further. It matches
both pretreatment covariates and outcomes between a treated unit and a set of control units and
uses pretreatment periods as criteria for good matches.1 Specifically, it constructs a “synthetic
control unit” as the counterfactual for the treated unit by reweighting the control units. It provides
explicit weights for the control units, thus making the comparison between the treated and
synthetic control units transparent. However, it only applies to the case of one treated unit and
the uncertainty estimates it o�ers are not easily interpretable.2

The second approach is to model the unobserved time-varying heterogeneities explicitly. A
widely used strategy is to add in unit-specific linear or quadratic time trends to conventional
two-way fixed e�ects models. By doing so, researchers essentially rely upon a set of alternative
identification assumptions that treatment assignment is ignorable conditional on both the fixed
e�ects and the imposed trends (Mora and Reggio 2012). Controlling for these trends, however,
o�en consumes a large number of degrees of freedom andmay not necessarily solve the problem
if the underlying confounders are not in forms of the specified trends.
An alternative way is to model unobserved time-varying confounders semiparametrically. For

example, Bai (2009) proposes an interactive fixed e�ects (IFE) model, which incorporates unit-
specific intercepts interactedwith time-varying coe�icients. The time-varying coe�icients are also
referred to as (latent) factorswhile the unit-specific intercepts are labeled as factor loadings. This
approach builds upon an earlier literature on factor models in quantitative finance.3 The model
is estimated by iteratively conducting a factor analysis of the residuals from a linear model and
estimating the linear model that takes into account the influences of a fixed number of most
influential factors. Pang (2010, 2014) explores nonlinear IFE models with exogenous covariates in
a Bayesian multi-level framework. Stewart (2014) provides a general framework of estimating IFE
models based on a Bayesian variational inference algorithm. Gobillon and Magnac (2016) show
that IFE models outperform the synthetic control method in DID settings when factor loadings of
the treatment and control groups do not share common support.4

This paper proposes ageneralized synthetic control (GSC)method that links the twoapproaches
and unifies the synthetic control method with linear fixed e�ects models under a simple
framework, of which DID is a special case. It first estimates an IFE model using only the control
group data, obtaining a fixed number of latent factors. It then estimates factor loadings for each
treated unit by linearly projecting pretreatment treated outcomes onto the space spanned by
these factors. Finally, it imputes treated counterfactuals based on the estimated factors and factor
loadings. The main contribution of this paper, hence, is to employ a latent factor approach to
address a causal inference problem and provide valid, simulation-based uncertainty estimates
under reasonable assumptions.
This method is in the spirit of the synthetic control method in the sense that by essence it is

a reweighting scheme that takes pretreatment treated outcomes as benchmarks when choosing
weights for control units and uses cross-sectional correlations between treated and control units
to predict treated counterfactuals. Unlike the synthetic matching method, however, it conducts
dimension reduction prior to reweighting such that vectors to be reweighted on are smoothed
across control units. The method can also be understood as a bias correction procedure for IFE

1 See Hsiao, Ching, and Wan (2012) and Angrist, Jord, and Kuersteiner (2013) for alternative matching methods along this
line of thought.

2 To gauge the uncertainty of the estimated treatment e�ect, the synthetic control method compares the estimated
treatment e�ect with the “e�ects” estimated from placebo tests in which the treatment is randomly assigned to a control
unit.

3 See Campbell, Lo, and MacKinlay (1997) for applications of factor models in finance.
4 For more empirical applications of the IFE estimator, see Kim and Oka (2014) and Gaibulloev, Sandler, and Sul (2014).
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models when the treatment e�ect is heterogeneous across units.5 It treats counterfactuals of
treated units as missing data and makes out-of-sample predictions for posttreatment treated
outcomes based on an IFE model.
Thismethod has several advantages. First, it generalizes the synthetic control method to cases

of multiple treated units and/or variable treatment periods. Since the IFEmodel is estimated only
once, treated counterfactuals are obtained in a single run. Users therefore no longer need to find
matches of control units for each treated unit one by one.6 This makes the algorithm fast and less
sensitive to the idiosyncrasies of a small number of observations.
Second, the GSC method produces frequentist uncertainty estimates, such as standard

errors and confidence intervals, and improves e�iciency under correct model specifications.
A parametric bootstrap procedure based on simulated data can provide valid inference under
reasonableassumptions. Sincenoobservationsarediscarded fromthecontrol group, thismethod
uses more information from the control group and thus is more e�icient than the synthetic
matching method when the model is correctly specified.
Third, it embeds a cross-validation scheme that selects the number of factors of the IFEmodel

automatically, and thus is easy to implement. One advantage of the DID data structure is that
treated observations in pretreatment periods can naturally serve as a validation dataset formodel
selection.Weshowthatwith su�icientdata, the cross-validationprocedure canpickup thecorrect
number of factors with high probability, therefore reducing the risks of overfitting.
The GSCmethod has twomain limitations. First, it requires more pretreatment data than fixed

e�ects estimators. When the number of pretreatment periods is small, “incidental parameters”
can lead to biased estimates of the treatment e�ects. Second, and perhaps more importantly,
modeling assumptions play a heavier role with the GSC method than the original synthetic
matching method. For example, if the treated and control units do not share common support in
factor loadings, the synthetic matching method may simply fail to construct a synthetic control
unit. Since such a problem is obvious to users, the chances that users misuse the method
are small. The GSC method, however, will still impute treated counterfactuals based on model
extrapolation,whichmay lead to erroneous conclusions. To safeguard against this risk, it is crucial
to conduct various diagnostic checks, such as plotting the raw data, fitted values, and predicted
counterfactuals.
The rest of the paper is organized as follows. Section 2 sets up the model and defines the

quantities of interest. Section 3 introduces the GSC estimator, describes how it is implemented,
anddiscuss theparametricbootstrapprocedure. Section4 reports simulation results that explores
the finite sample properties of the GSC estimator and compares it with several existing methods.
Section 5 illustrates themethod with an empirical example that investigates the e�ect of Election
Day Registration (EDR) laws on voter turnout in the United States. The last section concludes.

2 Framework
SupposeYi t is the outcome of interest of unit i at time t . Let T and C denote the sets of units in
treatment and control groups, respectively. The total number of units is N = N t r + Nco , where
N t r and Nco are the numbers of treated and control units, respectively. All units are observed for
T periods (from time 1 to timeT ). LetT0,i be the number of pretreatment periods for unit i , which

5 When the treatment e�ect is heterogeneous (as it is almost always the case), an IFE model that imposes a constant
treatment e�ect assumption gives biased estimates of the average treatment e�ect because the estimation of the factor
space is a�ected by the heterogeneity in the treatment e�ect.

6 For example, Acemoglu et al. (2016), who estimate the e�ect of TimGeithner connections on stockmarket returns, conduct
the synthetic controlmethod repeatedly for each connected (treated) firm; Dube and Zipperer (2015) estimate the e�ect of
minimumwage policies on wage and employment by conducting themethod for each of the 29 policy changes. The latter
also extend Abadie, Diamond, and Hainmueller (2010)’s original inferential method to the case of multiple treated units
using the mean percentile ranks of the estimated e�ects.
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is first exposed to the treatment at time (T0,i + 1) and subsequently observed for qi = T − T0,i
periods. Units in the control group are never exposed to the treatment in the observed time span.
For notational convenience, we assume that all treated units are first exposed to the treatment at
the same time, i.e.,T0,i = T0 and qi = q ; variable treatment periods can be easily accommodated.
First, we assume thatYi t is given by a linear factor model.

ASSUMPTION 1. Functional form:

Yi t = δi tDi t + x
′
i tβ + λ ′i ft + εi t ,

where the treatment indicatorDi t equals 1 if unit i has been exposed to the treatment prior to time
t and equals 0 otherwise (i.e., Di t = 1 when i ∈ T and t > T0 and Di t = 0 otherwise).7 δi t is the
heterogeneous treatment e�ect on unit i at time t ; xi t is a (k × 1) vector of observed covariates,
β = [β1, . . . , βk ]

′ is a (k ×1) vector of unknownparameters,8 ft = [f1t , . . . , fr t ]
′ is an (r ×1) vector of

unobservedcommon factors,λi = [λi1, . . . , λi r ]
′ is an (r×1) vectorofunknown factor loadings, and

εi t representsunobserved idiosyncratic shocks forunit i at time t andhaszeromean.Assumption 1
requires that the treated and control units are a�ected by the same set of factors and the number
of factors is fixed during the observed time periods, i.e., no structural breaks are allowed.
The factor component of the model, λ ′i ft = λi1f1t + λi2f2t + · · · + λi r fr t , takes a linear, additive

formbyassumption. In spiteof the seemingly restrictive form, it coversawide rangeofunobserved
heterogeneities. First and foremost, conventional additive unit and time fixed e�ects are special
cases. To see this, if we set f1t = 1 and λi2 = 1 and rewrite λi1 = αi and f2t = ξt , then λi1f1t +
λi2f2t = αi + ξt .9 Moreover, the term also incorporates cases ranging from unit-specific linear
or quadratic time trends to autoregressive components that researchers o�en control for when
analyzing TSCS data.10 In general, as long as an unobserved random variable can be decomposed
into a multiplicative form, i.e., Ui t = ai × bt , it can be absorbed by λ ′i ft while it cannot capture
unobserved confounders that are independent across units.
To formalize the notion of causality, we also use the notation from the potential outcomes

framework for causal inference (Neyman 1923; Rubin 1974; Holland 1986). LetYi t (1) andYi t (0) be
the potential outcomes for individual i at time t when Di t = 1 or Di t = 0, respectively. We thus
haveYi t (0) = x ′i tβ + λ ′i ft + εi t andYi t (1) = δi t + x

′
i tβ + λ ′i ft + εi t . The individual treatment e�ect

on treated unit i at time t is therefore δi t =Yi t (1) −Yi t (0) for any i ∈ T , t > T0.
We can rewrite the DGP of each unit as:

Yi = Di ◦ δi + Xi β + F λi + εi , i ∈ 1, 2, . . .Nco ,Nco + 1, . . . ,N ,

whereYi = [Yi1,Yi2, . . . ,YiT ]
′; Di = [Di1,Di2, . . . ,DiT ]

′ and δi = [δi1, δi2, . . . , δiT ]
′ (symbol “◦”

stands for point-wise product); εi = [εi1, εi2, . . . , εiT ]
′ are (T × 1) vectors;Xi = [xi1, xi2, . . . , xiT ]

′

is a (T × k ) matrix; and F = [f1, f2, . . . , fT ]
′ is a (T × r ) matrix.

7 Cases in which the treatment switches on and o� (or “multiple-treatment-time”) can be easily incorporated in this
framework as long as we impose assumptions on how the treatment a�ects current and future outcomes. For example,
one can assume that the treatment only a�ect the current outcome but not future outcomes (no carryover e�ect), as
fixed e�ects models o�en do. In this paper, we do not impose such assumptions. See Imai and Kim (2016) for a thorough
discussion.

8 β is assumed tobeconstantacross spaceand timemainly for thepurposeof fast computation in the frequentist framework.
It is a limitation compared with more flexible and increasingly popular random coe�icient models in Bayesian multi-level
analysis.

9 For this reason, additiveunit and time fixede�ects arenot explicitly assumed in themodel. Anextendedmodel thatdirectly
imposes additive two-way fixed e�ects is discussed in the next section.

10 In the former case, we can set f1t = t and f2t = t 2; in the latter case, for example, we can rewriteYi t = ρYi ,t−1 + x ′i t β + εi t
asYi t = Yi0 · ρt + x ′i t β + νi t , in which νi t is an AR(1) process and ρt andYi0 are the unknown factor and factor loadings,
respectively. See Gobillon and Magnac (2016) for more examples.
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The control and treated units are subscripted from 1 toNco and fromNco +1 toN , respectively.
The DGP of a control unit can be expressed as:Yi = Xi β + F λi + εi , i ∈ 1, 2, . . .Nco . Stacking all
control units together, we have:

Yco = Xcoβ + FΛ′co + εco , (1)

in which Yco = [Y1,Y2, . . . ,YNco ] and εco = [ε1, ε2, . . . , εNco ] are (T × Nco ) matrices; Xco is a
three-dimensional (T × Nco × p) matrix; andΛco = [λ1, λ2, . . . , λNco ]

′ is a (Nco × r ) matrix, hence,
the productsXcoβ and FΛ′co are also (T × Nco ) matrices. To identify β , F andΛco in Equation (1),
more constraints are needed. Following Bai (2003, 2009), I add two sets of constraints on the
factors and factor loadings: (1) all factor are normalized, and (2) they are orthogonal to each other,
i.e.: F ′F /T = Ir and Λ′coΛco = diagonal.11 For the moment, the number of factors r is assumed
to be known. In the next section, we propose a cross-validation procedure that automates the
choice of r .
The main quantity of interest of this paper is the average treatment e�ect on the treated (ATT)

at time t (when t > T0):

ATTt ,t>T0 =
1

N t r

∑

i ∈T
[Yi t (1) −Yi t (0)] = 1

N t r

∑

i ∈T
δi t .

12

Note that in this paper, as in Abadie, Diamond, and Hainmueller (2010), we treat the treatment
e�ects δi t as given once the sample is drawn.13 Because Yi t (1) is observed for treated units in
posttreatment periods, the main objective of this paper is to construct counterfactuals for each
treated unit in posttreatment periods, i.e., Yi t (0) for i ∈ T and t > T0. The problem of causal
inference indeed turns into a problem of forecasting missing data.14

2.1 Assumptions for causal identification
In addition to the functional form assumption (Assumption 1), three assumptions are required for
the identification of the quantities of interest. Among them, the assumption of strict exogeneity is
the most important.

ASSUMPTION 2. Strict exogeneity.

εi t ⊥⊥ Dj s , xj s , λj , fs [i , j , t , s .

Assumption 2means that the error termof anyunit at any timeperiod is independent of treatment
assignment, observed covariates, and unobserved cross-sectional and temporal heterogeneities

11 These constraints do not lead to loss of generality because for an arbitrary pair ofmatrices F andΛco , we can find an (r × r )
invertiblematrixA such that (F A)′(F A)/T = Ir and (A−1Λco )′A−1Λco is a diagonalmatrix. To see this, we can then rewrite
λ′
i
F as λ̃′

i
F̃ , in which F̃ = F A and λ̃i = A−1λi for units in both the treatment and control groups such that F̃ and Λ̃co satisfy

the above constraints. The total number of constraints is r 2, the dimension of thematrix spacewhereA belongs. It is worth
noting that although the original factors F may not be identifiable, the space spanned by F , a r -dimensional subspace of
in theT -dimensional space, is identified under the above constraints because for any vector in the subspace spanned by
F̃ , it is also in the subspace spanned by the original factors F .

12 For a clear and detailed explanation of quantities of interest in TSCS analysis, see Blackwell and Glynn (2015). Using
their terminology, this paper intends to estimate the Average Treatment History E�ect on the Treated given two specific
treatment histories: Å[Yi t (a1t ) −Yi t (a0t )`D i ,t−1 = a1t−1] in which a

0
t = (0, . . . , 0), a1t = (0, . . . , 0, 1, . . . , 1) withT0 zeros and

(t −T0) ones indicate the histories of treatment statuses. We keep the current notation for simplicity.
13 We attempt to make inference about the ATT in the sample we draw, not the ATT of the population. In other words, we do
not incorporate uncertainty of the treatment e�ects δi t .

14 The idea of predicting treated counterfactuals in a DID setup is also explored by Brodersen et al. (2014) using a structural
Bayesian time-series approach.
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of all units (including itself) at all periods. We call it a strict exogeneity assumption, which implies
conditional mean independence, i.e., Å[εi t `Di t , xi t , λi , ft ] = Å[εi t `xi t , λi , ft ] = 0.15

Assumption2 is arguablyweaker than the strict exogeneityassumption requiredby fixede�ects
models when decomposable time-varying confounders are at present. These confounders are
decomposable if they can take forms of heterogeneous impacts of a common trend or a series of
commonshocks. For instance, supposea law is passed in a statebecause thepublic opinion in that
state becomes more liberal. Because changing ideologies are o�en cross-sectionally correlated
across states, a latent factor may be able to capture shi�ing ideology at the national level; the
national shi�s may have a larger impact on a state that has a tradition of mass liberalism or
has a higher proportion of manufacturing workers than a state that is historically conservative.
Controlling for this unobserved confounder, therefore, can alleviate the concern that the passage
of the law is endogenous to changing ideology of a state’s constituents to a great extent.
When such a confounder exists, with two-ways fixed e�ects models we need to assume that

(εi t + λi ft ) ⊥⊥ Dj s , xj s , αj , ξs , [i , j , t , s (with λi ft , αj and ξs representing the time-varying
confounder for unit i at time t , fixed e�ect for unit j , and fixed e�ect for time s , respectively)
for the identification of the constant treatment e�ect. This is implausible because λi ft is likely to
be correlated with Di t , xi t , and αi , not to mention other terms. In contrast, Assumption 2 allows
the treatment indicator to be correlated with both xj s and λ ′j fs for any unit j at any time periods s
(including i and t themselves).
Identifying the treatment e�ects also requires the following assumptions:

ASSUMPTION 3. Weak serial dependence of the error terms.

ASSUMPTION 4. Regularity conditions.

Assumptions 3 and 4 (see the Online Appendix in SupplementaryMaterials for details) are needed
for the consistent estimation of β and the space spanned by F (or F ′F /T ). Similar, though slightly
weaker, assumptions are made in Bai (2009) and Moon and Weidner (2015). Assumption 3 allows
weak serial correlations but rules out strong serial dependence, such as unit root processes; errors
of di�erent units are uncorrelated. A su�icient condition for Assumption 3 to hold is that the error
terms are not only independent of covariates, factors, and factor loadings, but also independent
both across units and over time, which is assumed in Abadie, Diamond, and Hainmueller (2010).
Assumption 4 specifies moment conditions that ensure the convergence of the estimator.
For valid inference based on a block bootstrap procedure discussed in the next section, we also

need Assumption 5 (see Online Appendix for details). Heteroscedasticity across time, however, is
allowed.

ASSUMPTION 5. The error terms are cross-sectionally independent and homoscedastic.

REMARK 1. Assumptions 3 and 5 suggest that the error terms εi t can be serially correlated.
Assumption 2 rules out dynamic models with lagged dependent variables; however, this is
mainly for the purpose of simplifying proofs (Bai 2009, p. 1243). The proposed method can
accommodate dynamic models as long as the error terms are not serially correlated.

3 Estimation Strategy
In this section, we first propose a GSC estimator for treatment e�ect of each treated unit. It is
essentially an out-of-sample prediction method based on Bai (2009)’s factor augmentedmodel.

15 Note that because εi t is independent ofDi s and xi s for all (t , s ), Assumption 2 rules out the possibility that past outcomes
may a�ect future treatments, which is allowed by the so called “sequential exogeneity” assumption. A directed acyclic
graph (DAG) representation is provided in the Online Appendix. See Blackwell and Glynn (2015) and Imai and Kim (2016)
for discussions on the di�erence between the strict ignorability and sequential ignorability assumptions. What is unique
here is that we conditional on unobserved factors and factor loadings.
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The GSC estimator for the treatment e�ect on treated unit i at time t is given by the di�erence
between the actual outcome and its estimated counterfactual: δ̂i t =Yi t (1)−Ŷi t (0), in which Ŷi t (0)
is imputedwith three steps. In the first step,we estimate an IFEmodel using only the control group
data and obtain β̂ , F̂ , Λ̂co :

Step 1. (β̂ , F̂ , Λ̂co ) = argmin
β̃ ,F̃ ,Λ̃co

∑

i ∈C
(Yi − Xi β̃ − F̃ λ̃i )′(Yi − Xi β̃ − F̃ λ̃i )

s.t. F̃ ′F̃ /T = Ir and Λ̃′coΛ̃co = diagonal.

Weexplain in detail how to estimate thismodel in theOnline Appendix. The second step estimates
factor loadings for each treatedunit byminimizing themeansquarederrorof thepredicted treated
outcome in pretreatment periods:

Step 2. λ̂i = argmin
λ̃i

(Y 0
i − X 0

i β̂ − F̂ 0λ̃i )′(Y 0
i − X 0

i β̂ − F̂ 0λ̃i )

= (F̂ 0′F̂ 0)−1F̂ 0′(Y 0
i − X 0

i β̂ ), i ∈ T ,

in which β̂ and F̂ 0 are from the first-step estimation and the superscripts “0”s denote the
pretreatmentperiods. In the third step,we calculate treated counterfactuals basedon β̂ , F̂ , and λ̂i :

Step 3. Ŷi t (0) = x ′i t β̂ + λ̂ ′i f̂t i ∈ T , t > T0.

An estimator for ATTt therefore is: EATT t = (1/N t r )
∑
i ∈T [Yi t (1) − Ŷi t (0)] for t > T0.

REMARK 2. In the Online Appendix, we show that, under Assumptions 1–4, the bias of the GSC
shrinks to zero as the sample size grows, i.e., Åε (EATT t `D ,X ,Λ, F ) → ATTt as Nco ,T0 → 0

(N t r is taken as given), in which D = [D1,D2, . . . ,DN ] is a (T × N ) matrix, X is a three-
dimensional (T × N × p) matrix; andΛ = [λ1, λ2, . . . , λN ]

′ is a (N × r ) matrix. Intuitively, both
large Nco and largeT0 are necessary for the convergences of β̂ and the estimated factor space.
WhenT0 is small, imprecise estimation of the factor loadings, or the “incidental parameters”
problem, will lead to bias in the estimated treatment e�ects. This is a crucial di�erence from
the conventional linear fixed e�ects models.

3.1 Model selection
In practice, researchers may have limited knowledge of the exact number of factors to be
included in themodel. Therefore,wedevelopacross-validationprocedure to selectmodelsbefore
estimating the causal e�ect. It relies on the control group information as well as information from
the treatment group in pretreatment periods. Algorithm 1 describes the details of this procedure.

ALGORITHM 1 (Cross-validating the number of factors). A leave-one-out-cross-validation pro-
cedure that selects the number of factors takes the following steps:

Step 1. Start with a given number of factors r , estimate an IFE model using the control group data
{Yi ,Xi }i ∈C , obtaining β̂ and F̂ ;

Step 2. Start a cross-validation loop that goes through allT0 pretreatment periods:

(a) In round s ∈ {1, . . . ,T0}, hold back data of all treated units at time s . Run an OLS
regression using the rest of the pretreatment data, obtaining factor loadings for each
treated unit i :

λ̂i ,−s = (F 0′−sF 0−s )−1F 0′−s (Y 0
i ,−s − X 0′

i ,−s β̂ ), [i ∈ T ,

in which the subscript “-s” stands for all pretreatment periods except for s .
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(b) Predict the treated outcomes at time s using Ŷ (0)i s = x ′
i s
β̂ + λ̂′

i ,−s f̂s and save the
prediction error e i s =Yi s (0) − Ŷi s (0) for all i ∈ T .

End of the cross-validation loop;
Step 3. Calculate the mean square prediction error (MSPE) given r ,

MSPE(r ) =
T0∑

s=1

∑

i ∈T
e2i s/T0.

Step 4. Repeat Steps 1–3 with di�erent r ’s and obtain corresponding MSPEs.
Step 5. Choose r ∗ that minimizes the MSPE.

The basic idea of the above procedure is to hold back a small amount of data (e.g., one
pretreatment period of the treatment group) and use the rest of data to predict the held-back
information. The algorithm then chooses the model that on average makes the most accurate
predictions. A TSCS dataset with a DID data structure allows us to do so because (1) there exists
a set of control units that are never exposed to the treatment and therefore can serve as the basis
for estimating time-varying factors and (2) the pretreatment periods of treated units constitute
a natural validation set for candidate models. This procedure is computationally inexpensive
because with each r , the IFE model is estimated only once (Step 1). Other steps involves merely
simple calculations. In the Online Appendix, we conduct Monte Carlo exercises and show that
the above procedure performs well in term of choosing the correct number of factors even with
relatively small datasets.

REMARK 3. Our framework can also accommodate DGPs that directly incorporate additive fixed
e�ects, known time trends, and exogenous time-invariant covariates, such as:

Yi t = δi tDi t + x
′
i tβ + γ ′i l t + z

′
i θt + λ

′
i ft + αi + ξt + εi t , (2)

in which l t is a (q × 1) vector of known time trends that may a�ect each unit di�erently; γi
is (q × 1) unit-specific unknown parameters; zi is a (m × 1) vector of observed time-invariant
covariates; θt is a (m × 1) vector of unknown parameters; αi and ξt are additive individual and
time fixed e�ects, respectively. We describe the estimation procedure of this extended model
in the Online Appendix.

3.2 Inference
We rely on a parametric bootstrap procedure to obtain the uncertainty estimates of the GSC
estimator (deriving the analytical asymptotic distribution of the GSC estimator is a necessary
step for future research). When the sample size is large, when N t r is large in particular, a simple
nonparametric bootstrap procedure can provide valid uncertainty estimates. When the sample
size is small, especially whenN t r is small, we are unable to approximate the DGP of the treatment
group by resampling the data nonparametrically. In this case, we simply lack the information of
the joint distribution of (Xi , λi , δi ) for the treatment group. However, we can obtain uncertainty
estimates conditional on observed covariates and unobserved factors and factor loadings using
a parametric bootstrap procedure via resampling the residuals. By resampling entire time series
of residuals, we preserve the serial correlation within the units, thus avoiding underestimating
the standard errors due to serial correlations (Beck and Katz 1995). Our goal is to estimate the
conditional variance of ATT estimator, i.e., Varε (EATT t `D ,X ,Λ, F ). Notice that the only random
variable that is not being conditioned on is εi , which are assumed to be independent of treatment
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assignment, observed covariates, factors and factor loadings (Assumption 2). We can interpret εi
as measurement errors or variations in the outcome that we cannot explain but are unrelated to
treatment assignment.16

In the parametric bootstrap procedure, we simulate treated counterfactuals and control units
based on the following resampling scheme:

Ỹi (0) = Xi β̂ + F̂ λ̂i + ε̃i , [i ∈ C;
Ỹi (0) = Xi β̂ + F̂ λ̂i + ε̃

p
i
, [i ∈ T ,

in which Ỹi (0) is a vector of simulated outcomes in the absence of the treatment; Xi β̂ + F̂ λ̂i is
the estimated conditional mean; and ε̃i and ε̃

p
i
are resampled residuals for unit i , depending

on whether it belongs to the treatment or control group. Because β̂ are F̂ are estimated using
only the control group information, Xi β̂ + F̂ λ̂i fits Xi β + F λi better for a control unit than for
a treated unit (as a result, the variance of ε̃p

i
is usually bigger than that of ε̃i ). Hence, ε̃i and

ε̃
p
i
are drawn from di�erent empirical distributions: ε̃i is the in-sample error of the IFE model

fitted to the control group data, and therefore is drawn from the empirical distribution of the
residuals of the IFEmodel, while ε̃p

i
can be seen as the prediction error of the IFEmodel for treated

counterfactuals.17

Although we cannot observe treated counterfactuals, Yi t (0) is observed for all control units.
With the assumptions that treated and control units follow the same factor model (Assumption 1)
and the error terms are independent and homoscedastic across space (Assumption 5), we can
use a cross-validation method to simulate εp

i
based on the control group data (Efron 2012).

Specifically, each time we leave one control unit out (to be taken as a “fake” treat unit) and use
the rest of the control units to predict the outcome of le�-out unit. The di�erence between the
predicted and observed outcomes is a prediction error of the IFE model. εp

i
is drawn from the

empirical distributions of the prediction errors. Under Assumptions 1–5, this procedure provides
valid uncertainty estimates for the proposed method without making particular distributional
assumptions of the error terms. Algorithm 2 describes the entire procedure in detail.

ALGORITHM 2 (Inference). A parametric bootstrap procedure that gives the uncertainty
estimates of the ATT is described as follows:

Step 1. Start a loop that runs B1 times:

(a) In roundm ∈ {1, . . . ,B1}, randomly select one control unit i as if it was treated when
t > T0.

(b) Resample the rest of the control group with replacement of size Nco and form a new
sample with one “treated” unit and Nco resampled control units.

(c) Apply the GSC method to the new sample, obtaining a vector of prediction error, or
residuals; ε̂p(m) =Yi − Ŷi (0).

End of the loop, collecting êp = {ε̂
p

(1), ε̂
p

(2) · · · , ε̂
p

(B1)
}.

Step 2. Apply the GSCmethod to the original data, obtaining: (1) EATT t for all t > T0, (2) estimated
coe�icients: β̂ , F̂ , Λ̂co , and λ̂j ,j ∈T , and (3) the fittedvaluesand residualsof thecontrol units:
Ŷco = {Ŷ1(0),Ŷ2(0), . . . ,ŶNco (0)} and ê = {ε̂1, ε̂2, . . . , ε̂Nco }.

16 εi t may be correlated with λ̂i when the errors are serially correlated because λ̂i is estimated using the pretreatment data.
17 The treated outcome for unit i , thus can be drawn fromỸi (1) = Ỹi (0)+δi . We do not directly observe δi , but since it is taken
as given, its presencewill not a�ect the uncertainty estimates of EATT t . Hence, in the bootstrap procedure, we useỸi (0) for
both the treatment and control groups to form bootstrapped samples (set δi = 0, for all i ∈ T ). We will add back EATT t
when constructing confidence intervals.
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Step 3. Start a bootstrap loop that runs B2 times:

(a) In round k ∈ {1, . . . ,B2}, construct a bootstrapped sample S (k ) by:

Ỹ
(k )
i
(0) = Ŷi (0) + ε̃i , i ∈ C

Ỹ
(k )
i
(0) = Ŷi (0) + ε̃

p
i
, j ∈ T

in which each vector of ε̃i and ε̃
p
j
are randomly selected from sets e and ep ,

respectively, and Ŷi (0) = Xi β̂ + F̂ λ̂i . Note that the simulated treated counterfactuals
do not contain the treatment e�ect.

(b) Apply the GSC method to S (k ) and obtain a new ATT estimate; add EATT t ,t>T0 to it,
obtaining the bootstrapped estimate EATT (k )t ,t>T0 .

End of the bootstrap loop.
Step 4. Compute the variance of EATT t ,t>T0 using

Var(EATT t `D ,X ,Λ, F ) = 1

B

B∑

k=1

*.,
EATT (k )t − 1

B

B∑

j=1

EATT (j )t +/-
2

and its confidence interval using the conventional percentile method (Efron and Tibshirani
1993).

4 Monte Carlo Evidence
In this section, we conduct Monte Carlo exercises to explore the finite sample properties of the
GSC estimator and compare it with several existing methods, including the DID estimator, the IFE
estimator, and theoriginal syntheticmatchingmethod.Wealso investigate the extent towhich the
proposed cross-validation scheme can choose the number of factors correctly in relatively small
samples.
We start with the following data generating process (DGP) that includes two observed time-

varying covariates, two unobserved factors, and additive two-way fixed e�ects:

Yi t = δi tDi t + xi t ,1 · 1 + xi t ,2 · 3 + λ ′i ft + αi + ξt + 5 + εi t (3)

where ft = (f1t , f2t )′ and λi = (λi1, λi2)′ are time-varying factors and unit-specific factor loadings.
The covariates are (positively) correlated with both the factors and factor loadings: xi t ,k = 1 +

λ ′i ft + λi1 + λi2 + f1t + f2t + ηi t ,k , k = 1, 2. The error term εi t and disturbances in covariates ηi t ,1
and ηi t ,2 are i.i.d. N (0, 1). Factors f1t and f2t , as well as time fixed e�ects ξt , are also i.i.d. N (0, 1).
The treatment and control groups consist of N t r and Nco units. The treatment starts to a�ect
the treated units at timeT0 + 1 and since then 10 periods are observed (q = 10). The treatment
indicator is defined as in Section 2, i.e.,Di t = 1when i ∈ T and t > T0 andDi t = 0 otherwise. The
heterogeneous treatment e�ect is generated by δi t ,t>T0 = δ̄t + e i t , in which e i t is i.i.d. N(0,1). δ̄t is
given by: [δ̄T0+1, δ̄T0+1, . . . , δ̄T0+10] = [1, 2, . . . , 10].
Factor loadingsλi1 andλi2, aswell as unit fixed e�ectsαi , are drawn fromuniformdistributions

U [−√3,√3] for control units andU [√3 − 2w
√
3, 3
√
3 − 2w

√
3] for treated units (w ∈ [0, 1]). This

means that when 0 ≤ w < 1, (1) the random variables have variance 1; (2) the supports of factor
loadings of treated and control units are not perfectly overlapped; and (3) the treatment indicator
and factor loadings are positively correlated.18

18 The DGP specified here is modified based on Bai (2009) and Gobillon and Magnac (2016).
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Figure 1. Estimated ATT for a simulated sample Nt r = 5, Nco = 45,T = 30,T0 = 10.

4.1 A simulated example
We first illustrate the proposed method, as well as the DGP described above, with a simulated
sample of N t r = 5, Nco = 45, and T0 = 20 (hence, N = 50, T = 30). w is set to be 0.8, which
means that the treated units are more likely to have larger factor loadings than the control units.
Figure 1 visualizes the raw data and estimation results. In the upper panel, the dark and light gray
lines are time series of the treated and control units, respectively. The bold solid line is the average
outcome of the five treated units while the bold dashed line is the average predicted outcome of
the five units in the absence of the treatment. The latter is imputed using the proposedmethod.
The lower panel of Figure 1 shows the estimated ATT (solid line) and the true ATT (dashed line).

The 95 percent confidence intervals for the ATT are based on bootstraps of 2,000 times. It shows
that the estimated average treated outcome fits the data well in pretreatment periods and the
estimated ATT is very close to the actual ATT. The estimated factors and factor loadings, as well
as imputed counterfactual and individual treatment e�ect for each treat unit, are shown in the
Online Appendix.

4.2 Finite sample properties
We present the Monte Carlo evidence on the finite sample properties of the GSC estimator in
Table 1 (additional results are shown in the Online Appendix). As in the previous example, the
treatment group is set to have five units. The estimand is the ATT at timeT0 + 5, whose expected
value equals 5. Observables, factors, and factor loadings are drawn only oncewhile the error term
is drawn repeatedly; w is set to be 0.8 such that treatment assignment is positively correlated
with factor loadings. Table 1 reports the bias, standard deviation (SD), and root mean squared
error (RMSE) of EATT T0+5 from 5,000 simulations for each pair of T0 and Nco .19 It shows that

19 Standard deviation is defined as: SD (EATT t ) =
√
Å[EATT (k )

t − Å(EATT (k )
t )]2, while root mean squared error is defined as:

RMSE (EATT t ) =
√
Å(EATT (k )

t − ATT (k )
t )2. The superscript (k ) denotes the k th sample. We see that they are very close

because the bias of the GSC estimator shrinks to zero as the sample size grows.
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Table 1. Finite sample properties and coverage rates

Ntr Nco T0 Bias SD RMSE Coverage

5 40 15 0.053 0.589 0.591 0.947
5 80 15 0.017 0.535 0.536 0.949
5 120 15 0.010 0.524 0.524 0.949
5 200 15 0.011 0.518 0.518 0.949

5 40 30 0.046 0.538 0.540 0.946
5 80 30 0.021 0.504 0.505 0.948
5 120 30 0.024 0.494 0.495 0.949
5 200 30 0.008 0.487 0.487 0.949

5 40 50 0.031 0.519 0.520 0.947
5 80 50 0.016 0.497 0.498 0.948
5 120 50 0.003 0.475 0.475 0.949
5 200 50 0.016 0.468 0.469 0.949

the GSC estimator has limited bias even when T0 and Nco are relatively small and the bias
goes away as T0 and Nco grow. As expected, both the SD and RMSE shrink when T0 and Nco
become larger. Table 1 also reports the coverage probabilities of 95 percent confidence intervals
forEATT i ,T0+5 constructedby theparametric bootstrapprocedure (Algorithm2). For eachpair ofT0
and Nco , the coverage probability is calculated based on 5,000 simulated samples, each of which
is bootstrapped for 1,000 times. These numbers show that the proposed procedure can achieve
the correct coverage rate even when the sample size is relatively small (e.g., T0 = 15, N t r = 5,
Nco = 80).
In the Online Appendix, we run additional simulations and compare the proposed method

with several existing methods, including the DID estimator, the IFE estimator, and the synthetic
matching method. We find that (1) the GSC estimator has less bias than the DID estimator in the
presence of unobserved, decomposable time-varying confounders; (2) it has less bias than the
IFE estimator when the treatment e�ect is heterogeneous; and (3) it is usually more e�icient than
the original synthetic matching estimator. It is worth emphasizing that these results are under
the premise of correct model specifications. To address the concern that the GSC method relies
on correct model specifications, we conduct additional tests and show that the cross-validation
schemedescribed in Algorithm 1 is able to choose the number of factors correctlymost of the time
when the sample is large enough.

5 Empirical Example
In this section,we illustrate theGSCmethodwith an empirical example that investigates the e�ect
of EDR laws on voter turnout in the United States. Voting in the United States usually takes two
steps. Except in North Dakota, where no registration is needed, eligible voters throughout the
country must register prior to casting their ballots. Registration, which o�en requires a separate
trip from voting, is widely regarded as a substantial cost of voting and a culprit of low turnout
rates before the 1993 National Voter Registration Act (NVRA) was enacted (e.g., Highton 2004).
Against this backdrop, EDR is a reform that allows eligible voters to register on Election Day when
they arrive at polling stations. In the mid-1970s, Maine, Minnesota, and Wisconsin were the first
adopters of this reform in the hopes of increasing voter turnout; while Idaho, NewHampshire, and
Wyoming established EDR in the 1990s as a strategy to opt out the NVRA (Hanmer 2009). Before
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the 2012 presidential election, three other states, Montana, Iowa, and Connecticut, passed laws to
enact EDR, adding the number of states having EDR laws to nine.20

Most existing studies based on individual-level cross-sectional data, such as the Current
PopulationSurveysand theNational ElectionSurveys, suggest thatEDR laws increase turnout (the
estimated e�ect varies from 5 to 14 percentage points).21 These studies do not provide compelling
evidence of a causal e�ect of EDR laws because the research designs they use are insu�icient
to address the problem that states self-select their systems of registration laws. “Registration
requirements did not descend from the skies,” as DeanBurnhamputs it (1980, p. 69). A few studies
employ time-series or TSCS analysis to address the identification problem.22 However, Keele and
Minozzi (2013) cast doubts on these studies and suggest that the “parallel trends” assumptionmay
not hold, as we will also demonstrate below.
In the following analysis, we use state-level voter turnout data for presidential elections from

1920 to2012.23 The turnout rates are calculatedwith total ballots counted in apresidential election
in a state as the numerator and the state’s voting-age population (VAP) as the denominator.24

Alaska and Hawaii are not included in the sample since they were not states until 1959. North
Dakota is also dropped since no registration is required. As mentioned above, up to the 2012
presidential election, nine states had adopted EDR laws (herea�er referred to as treated) and the
rest thirty-eight states had not (referred to as controls). The raw turnout data for all forty-seven
states are shown in the Online Appendix.25

First, we use a standard two-way fixed e�ectsmode,which is o�en referred to as aDIDmodel in
the literature. The results are shown in Table 2 columns (1) and (2). Standard errors are produced
by nonparametric bootstraps (blocked at the state level) of 2,000 times. In column (1), only the
EDR indicator is included, while in column (2), we additionally control for indicators of universal
mail-in registration and motor voter registration. The estimated coe�icients of EDR laws are 0.87
and0.78 percent using the two specifications, respectively,with standard errors around 3percent.
The two-way fixed e�ectsmodel presented in Table 2 assumes a constant treatment e�ect both

across states and over time. Next we relax this assumption by literally employing a DID approach.
In other words, we estimate the e�ect of EDR laws on voter turnout in the posttreatment period
by subtracting the time intercepts estimated from the control group and the unit intercepts based
on the pretreatment data. The predict turnout for state i in year t , therefore, is the summation of
unit intercept i and time intercept t , plus the impact of the time-varying covariates. The result is
visualized in the upper panel of Figure 2. Figure 2a shows the average actual turnout (solid line)
and average predicted turnout in the absence of EDR laws (dashed line); both averages are taken
based on the number of terms since (or before) EDR laws first took e�ect. Figure 2b shows the
gap between the two lines, or the estimated ATT. The confidence intervals are produced by block
bootstraps of 2,000 times. It is clear from both figures that the “parallel trends” assumption is not
likely to hold since the average predicted turnout deviates from the average actual turnout in the
pretreatment periods.

20 In theOnline Appendix, we list the years duringwhich EDR lawswere enacted and first took e�ect in presidential elections.
21 SeeWolfinger and Rosenstone (1980), Mitchell andWlezien (1995), Rhine (1992), Highton (1997), Timpone (1998), Timpone
(2002), Huang and Shields (2000), Alvarez, Ansolabehere, and Wilson (2002), Brians and Grofman (2001), Hanmer (2009),
Burden et al. (2009), Cain, Donovan, and Tolbert (2011), Teixeira (2011) for examples. The results are especially consistent
for the three early adopters, Maine, Minnesota, and Wisconsin.

22 See, for example, Fenster (1994), King andWambeam (1995), Knack andWhite (2000), Knack (2001), Neiheisel and Burden
(2012), Springer (2014).

23 The data from 1920 to 2000 are from Springer (2014). The data from 2004 to 2012 are from The United States Election
Project, http://www.electproject.org/. Indicators of other registration laws, including universal mail-in registration and
motor voter registration, also come from Springer (2014), with a few supplements. Replication files can be found in Xu
(2016).

24 We do not use the voting-eligible population (VEP) as the denominator because they are not available in early years.
25 As is shown in the figure and has been pointed out bymany, turnout rates are in general higher in states that have EDR laws
than states that have not, but this does not necessarily imply a causal relationship between EDR laws and voter turnout.
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Table 2. The e�ect of EDR on voter turnout

Voter turnout %

FE GSC

Outcome variable (1) (2) (3) (4)

Election Day Registration 0.87 0.78 5.13 4.90
(3.01) (3.31) (2.27) (2.27)

Universal mail-in registration −0.94 0.15
(1.80) (0.80)

Motor voter registration −0.21 −1.05
(1.45) (0.79)

State fixed e�ects x x x x
Year fixed e�ects x x x x
Unobserved factors N/A N/A 2 2
Observations 1,128 1,128 1,128 1,128
Treated states 9 9 9 9
Control states 38 38 38 38

Note: Standard errors in columns (1) and (2) are based on nonparametric bootstraps (blocked at the state
level) of 2,000 times. Standard errors in columns (3) and (4) are based on parametric bootstraps (blocked at
the state level) of 2,000 times.

Figure 2. The e�ect of EDR on turnout: Main results.
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Figure 3. The E�ect of EDR on turnout: Factors and loadings.

Next, we apply theGSCmethod to the samedataset. Table 2 columns (3) and (4) summarize the
result.26 Again, both specifications impose additive state and year fixed e�ects. In column (3), no
covariates are included, while in column (4), mail-in and motor voter registration are controlled
for (assuming that they have constant e�ects on turnout). With both specifications, the cross-
validation scheme finds two unobserved factors to be important and a�er conditioning on both
the factors and additive fixed e�ects, the estimated ATT based on the GSC method is around
5 percent with a standard error of 2.3 percent.27 This means that EDR laws are associated with
a statistically significant increase in voter turnout, consistent with previous OLS results based on
individual-level data. The lower panel of Figure 2 shows the dynamics of the estimated ATT. Again,
in the le� figure, averages are taken a�er the actual and predicted turnout rates are realigned to
the timing of the reform. With the GSCmethod, the average actual turnout and average predicted
turnoutmatchwell in pretreatment periods anddiverge a�er EDR laws took e�ect. The right figure
shows that the gaps between the two lines are virtually flat in pretreatment periods and the e�ect
takes o� right a�er the adoption of EDR.28

Figure 3 presents the estimated factors and factor loadings produced by the GSC method.29

Figure 3a depicts the two estimated factors. The x -axis is year and the y -axis is the magnitude
of factors (rescaled by the square root of their corresponding eigenvalues to demonstrate their
relative importance). Figure 3b shows the estimated factors loadings for each treated (black, bold)
and control (gray) units, with x - and y -axes indicating the magnitude of the loadings for the first
and second factors, respectively. Bearing in mind the caveat that estimated factors may not be
directly interpretable because they are, at best, linear transformations of the true factors, we find
that the estimated factors shown in this figure are meaningful. The first factor captures the sharp
increase in turnout in the southern states because of the 1965 Voting Rights Act that removed
Jim Crow laws, such as poll taxes or literacy tests, that suppressed turnout. As shown in the

26 Note that although the estimated ATT of EDR on voter turnout is presented in the same row as the coe�icient of EDR using
the FEmodel, the GSCmethod does not assume the treatment e�ect to be constant. In fact, it allows the treatment e�ect
to be di�erent both across states and over time. Predicted counterfactuals and individual treatment e�ect for each of the
nine treated states are shown in the Online Appendix.

27 The results are similar if additive stateandyear fixede�ectsarenotdirectly imposed, thoughnot surprisingly, thealgorithm
includes an additional factor.

28 Although it is not guaranteed, this is not surprising since the GSC method uses information of all past outcomes and
minimizes gaps between actual and predicted turnout rates in pretreatment periods.

29 The results are essentially the same with or without controlling for the other two registration reforms.
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Table 3. The e�ect of EDR on voter turnout: Three waves

Voter turnout %

1st wave 2nd wave 3rd wave

Outcome variable (1) (2) (3)

Election Day Registration 7.27 2.17 −1.14
(3.33) (2.82) (3.00)

Mail-in andmotor voter registration x x x
State fixed e�ects x x x
Year fixed e�ects x x x
Unobserved factors 2 2 2
Observations 1,128 1,128 1,128
Treated states 3 3 3

(ME, MN, WI) (ID, NH, WY) (MT, IA, CT)
Control states 38 38 38

Note: Standard errors are based on parametric bootstraps (blocked at the state level) of 1,000 times.

right figure, the top eleven states that have the largest loadings on the first factor are exactly the
eleven southern states (which were previously in the confederacy).30 The labels of these states
are underlined in Figure 3b. The second factor, which is set to be orthogonal to the first one, is
less interpretable. However, its nonnegligible magnitude indicates a strong downward trend in
voter turnout inmany states in recent years. Another reassuring finding shown by Figure 3b is that
the estimated factor loadings of the nine treated units mostly lie in the convex hull of those of
the control units, which indicates that the treated counterfactuals are produced mostly by more
reliable interpolations instead of extrapolations.
Finally, we investigate the heterogeneous treatment e�ects of EDR laws. Previous studies have

suggested that the motivations behind enacting these laws are vastly di�erent between the early
adopters and later ones. For example, Maine, Minnesota, and Wisconsin, which established the
EDR in mid-1970s, did so because o�icials in these states sincerely wanted the turnout rates
to be higher, while the “reluctant adopters,” including Idaho, New Hampshire, and Wyoming,
introduced the EDR as a means to avoid the NVRA because o�icials viewed the NVRA as “a more
costly and potentially chaotic system” (Hanmer 2009). Because of the di�erent motivations and
other reasons, we may expect the treatment e�ect of EDR laws to be di�erent in states that
adopted them in di�erent times.
The estimation of heterogeneous treatment e�ects is embedded in the GSC method since it

gives individual treatment e�ects for all treated units in a single run. Table 3 summarizes the ATTs
of EDR on voter turnout among the three waves of EDR adopters. Again, additive state and year
fixed e�ects, as well as indicators of two other registration systems, are controlled for. Table 3
shows that EDR laws have a large and positive e�ect on the early adopters (the estimate is about
7 percent with a standard error of 3 percent) while EDR laws were found to have no statistically
significant impact on the other six states.31 Such di�erential outcomes can be due to two reasons.
First, the NVRA of 1993 substantially reduced the cost of registration: since almost everyone who

30 Although we can control for indicators of Jim Crow laws in the model, such indicators may not be able to capture the
heterogeneous impacts of these laws on voter turnout in each state.

31 In the Online Appendix, we show that the treatment e�ects are positive (and relatively large) for all three early adopting
states, Maine, Minnesota, and Wisconsin. Using a fuzzy regression discontinuity design, Keele and Minozzi (2013) show
that EDR has almost no e�ect on the turnout in Wisconsin. The discrepancy with this paper could be mainly due to the
di�erence in the estimands. Twobiggest cities inWisconsin, Milwaukee andMadison constitute amajor part ofWisconsin’s
constituencybut haveneglectable influence to their local estimates.Oneadvantageof Keele andMinozzi (2013)’s approach
over ours is the use of fine-grainedmunicipal level data.
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has some intention to vote is a registrant a�er the NVRA was enacted, “there is now little room
for enhancing turnout further by making registration easier” (Highton 2004). Second, because
states having a strong “participatory culture” is more likely to be selected into an EDR system in
earlier years, costly registration, as a binding constraint in these states, may not be a first-order
issue in a state where many eligible voters have low incentives to vote in the first place. It is also
possible that voters in early adopting states formed a habit to vote in the days when the demand
for participation was high (Hanmer 2009).
In short, using the GSC method, we find that EDR laws increased turnout in early adopting

states, including Maine, Minnesota, and Wisconsin, but not in states that introduced EDR as a
strategy to opt out the NVRA or enacted EDR laws in recent years. These results are broadly
consistent with evidence provided by a large literature based on individual-level cross-sectional
data (see, for example, Leighley andNagler 2013 for a summary). They are alsomore credible than
results from conventional fixed e�ects models when the “parallel trends” assumption appears to
fail.32

6 Conclusion
In this paper, we propose the GSC method for causal inference with TSCS data. It attempts to
address the challenge that the “parallel trends” assumption o�en fails when researchers apply
fixede�ectsmodels toestimate thecausal e�ectof acertain treatment. TheGSCmethodestimates
the individual treatment e�ect on each treated unit semiparametrically. Specifically, it imputes
treated counterfactuals based on a linear interactive fixed e�ects model that incorporates time-
varying coe�icients (factors) interacted with unit-specific intercepts (factor loadings). A built-in
cross-validation scheme automatically selects the model, reducing the risks of overfitting.
This method is in spirit of the original synthetic control method in that it uses data from

pretreatment periods as benchmarks to customize a reweighting scheme of control units in order
to make the best possible predictions for treated counterfactuals. It generalizes the synthetic
control method in two aspects. First, it allows multiple treated units and di�erential treatment
timing. Second, it o�ers uncertainty estimates, such as standard errors and confidence intervals,
that are easy to interpret.
Monte Carlo exercises suggest that the proposed method performs well even with relatively

smallT0 andNco and show that it has advantages over several existingmethods: (1) it has less bias
than the two-way fixed e�ects or DID estimators in the presence of decomposable time-varying
confounders, (2) it corrects bias of the IFE estimator when the treatment e�ect is heterogeneous
across units; and (3) it is more e�icient than the synthetic control method. To illustrate the
applicability of thismethod inpolitical science,weestimate thee�ectof EDR lawsonvoter turnout
in the United States. We show that EDR laws increased turnout in early adopting states but not in
states that introduced themmore recently.
Two caveats are worth emphasizing. First, insu�icient data (with either a small T0 or a small

Nco ) cause bias in the estimated treatment e�ect. In general, users should be cautious when
T0 < 10 or Nco < 40. Second, excessive extrapolations based on imprecisely estimated factors
and factor loading can lead to erroneous results. To avoid this problem, we recommend the
following diagnostics upon using this method: (1) plot raw data of treated and control outcomes
as well as imputed counterfactuals and check whether the imputed values are within reasonable
intervals; (2) plot estimated factor loadings of both treated and control units and check the
overlap (as in Fig. 3). We provide so�ware routines gsynth in R to implement the estimation
procedure as well as these diagnostic tests. When excessive extrapolations appear to happen,

32 Glynn and Quinn (2011) argue that traditional cross-sectional methods in general overestimate the e�ect of EDR laws on
voter turnout and suggest that EDR laws are likely to have minimum e�ect on turnout in non-EDR states (the ATC). In this
paper, we focus on the e�ect of EDR in EDR states (the ATT) instead.
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we recommend users to include a smaller number of factors or switch back to the conventional
DID framework. We also recommend users to benchmark the results with estimates from the
IFE model (Bai 2009) as well as Bayesian multi-level factor models (e.g., Pang 2014) whenever
it is possible.
Another limitation of the proposed method is that it cannot accommodate complex DGPs

that o�en appear in TSCS data (when T is much bigger than panel data), such as (1) dynamic
relationships between the treatment, covariates, and outcome (e.g., Pang 2010, 2014, Blackwell
and Glynn 2015), (2) structural breaks (e.g., Park 2010, 2012), and (3) multiple times of treatment
and variable treatment intensity. Nor does it allow random coe�icients for the observed time-
varying covariates, as suchmodeling setups become increasing popularwith Bayesianmulti-level
analysis. Future research is needed to accommodate these scenarios.

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2016.2.
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